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THE TWO-DIMENSIONAL INVERSE PROBLEM OF ELASTICITY THEORY 

MEDIA IN POLAR COORDINATES* 

V.P. PLEVAKO 

FOR INHOMOGENEOUS 

The following problem is consiered: it is required to find the distribution 
law for the elasticity parameters of the material in a body in a given 
state of stress. Three modifications of this problem are derived: 1) the 
stresses and shear modulus are given, find the law of Poisson's ratio 
variation in the body; 2) the stresses and Poisson's ratio are given, 
find the nature of the change in the shear modulus of the body material; 
3) find the set of functions describing the law of variation in two 
parameters of the material elasticity for a known state of body stress. 

It is shown that the first kind of inverse problem reduces to solving Poisson's equation. 
The other two result in a second-order partial differential equation with variable coefficients. 
Its solutions are investigated for states of stress with zero shear stresses. As is known 
from classical elasticity theory, states of stress of this kind can occur in bodies in the 
form of a long pipe subjected to internal and external pressure, in the pure bending of a 
circular bar, in a wedge, in problems of stress concentration around holes, etc. 

An extensive class of particular solutions is obtained for the second kind of inverse 
problem when no constraints, with the exception of integrability of the given functions, can 
be imposed on the stress. 

It is shown that in solving the third kind of inverse problems, when both elasticity 
parameters are variable, the laws of their variation can be expressed in termsofone arbitrary 
function. 

Such problems were first investigated in /l, 2/. Solutions obtained up to now refer 
mainly to bodies of the simplest shapes and elementary states of stress. Thus, rectangular 
elements were considered in /l/ with states of stress of the pure shear, tension-compression, 
or bending types. The problem of seeking the law of Young's modulus variation in a wedge with 
a radial stress distribution. An approximate solution is obtained in /4/ for the two-dimensional 
problem of a long cylinder. Surveys of the researches devoted to the problem under consideration 
are given in bibliographies /5, 6/ and monographs /?, 8/. 

The whole range of problems associated with seeking the law of elasticity parameter 
variation for a material according to given stresses is customarily called the "inverse problem" 
in the theory of the elasticity of inhomogeneous media. Such a definition cannot encompass 
all possible formulations of inverse problems, and it must be supplemented. To do this, by 
analogy with classical elasticity theory, we separate the whole manifold of problems into 
three groups by isolating first, second, and mixed inverse problems of the mechanics of 
inhomogeneous media. The final purpose in solving each of them is to seek the elasticity 
parameter distribution law in a body and the problems are distinguished just by the initial 
data. In the first inverse problem, the stresses in the body are considered given, while in 
the second it is the displacements, and in the mixed problem the separate stress tensor 
components and the displacement vector are prescribed. 

The distinctions in the initial data also predetermine the substantial differences in 
the procedure for the solutions. The first inverse problem of the theory of elasticity of 
inhomogeneous bodies is examined below. 

1. To solve the first inverse problem of the theory of elasticity of inhomogeneous media 
it is necessary to solve the continuity equation in which the strains are expressed in terms 

ct ::.c 
-- 

:J*‘ss. In a polar coordinate system r = 1 52 T y2, fi = arc tg (y,z) this equation can be 
wr'ttei, In the form i 

(1.1, 

*Priki.Matem.Mekhan.,49,5,775-783,1985 595 



596 

Here u,, sfi, rr~ 

G* (r, 8) is the rel 
of the body. Eq.tl 

are the stress tensor components, v = v (r, @) is Poisson's ratio, * 
ative shear modulus, and Go is the value of the shear modulus at some point 
.l) has is valid for the case of plane strain. For the plane state 1' f 

stress, Y must be replaced by Y/Q + Y). 
Analysis of (1.1) shows that three modifications are possible for the first inverse 

problem: 1) ur, oe,~~~ and G(r,fi) are given, find the law of variation of Poisson's ratio 

v (r7 P) in the domain S occupied by the body; 2) the stresses and the function v (r. f3) are 
given, find the law of variation of the shear modulus G (r,p); 3) only the stresses are known 
and the set of functions G(r,p) and Y (r,@) must be found for which a given state of stress 
will be realized. 

2. The first case is the simplest. To solve this kind of inverse problem, il.11 should 
be written in the form (A is the two-dimensional Laplace operator) 

(2.1) 

By having the functions o,, cr*, rrR and G* (rt 8) available, 0 can be determined and the 
problem of seeking v (r,@) reduces to solving Poisson Eq.C.Z.1). Let q (r, 6) denote some 
particular solution of (2.11, and Y (r, p) an arbitrary harmonic function. Then from (2.1) it 
follows that 

1 

v(r’ ‘)=-i; - 2(Cr+ CR) 

G* ir. B)’ (y + ,+.) 

3. We now assume that some particular solution of the inverse problem has been found 
successfully. We let G* (r, p) and so (r, @) denote functions describing the nature of the change 
in parameters of the material elasticity in the domain S occuplied by the body. We will show 
that by having such a solution avaiiable we can transfer to a more general case of inhomogeneity. 

Let Y+ (r,p) be the law of variation of Poisson's ratio not taken into account by the 
function vC (r, fi). Here the same stresses as for Poisson's ratio vc (r,@) occur in the body 
with relative shear modulus G* (r, fl) Then the more general case of the inhomogeneities will 
be described by the functions 

G* = G* (r, @), T = v' (r, fi) - T+ (i-, 8) {X1) 

The problem therefore is to seek V- (I.,@) 
Such a formulation of the problem is similar in form to that considered in Sect.2. 

Substituting the function (3.1) and the given stresses o~.cM,T,~ into (2.1) and taking into 
account that G* and v0 are its particular solutions, we obtain A [v+ (a,+ uB)!G*] = 0. Hence 

it follows that 

T- = G' (a, + Q-l Y (r. p: (3.") 

4. The solution of problems corresponding to other modifications of the first inverse 
problem is fraught with mathematical difficulties. To simplify the problem, we will carry 
out further investigations as they apply to the special case of the stateofstresswhen try = ii 
in the domain S occupied by the body. 

We will first examine the case when only the stresses are known and the set of functions 

G* (r, B), v (r, B) must be found for which a given state of stress is realized. 
We introduce the function @ = @(P, fi) into consideration such that 

Substituting these relations into (X.1), we see that for r78=0 it is satisfied identically 
for any selection of the function @. Therefore, relations (4.1) yield a general solution of 
the inverse-problem type of the theory of elasticity of inhomogeneous media under consideration. 
Only those functions G* and v which satisfy the conditions 

O<G<oo, O,<V<~IZ (4.2) 

in the domain occupied by the body, evidently have any physical meaning. 
Solving the equilibrium equation for ~~8~0, we find that stresses that can be represented 

in the form 

ug = u 09, u,=*+f \ u(r)& 
P*(B) 

(4.3) 
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are allowable, where (J (r), ~p,,~(fi) are arbitrary functions. 

5. The inverse problem in which the law of variation of the shear modulus G* (r,fi) must 
be found for known stresses and Poisson's ratio Y (r, p) is the most difficult one since a 

partial differential equation with variable coefficients (1.1) must be solved, which cannot, 

as a rule, be successfully reduced to those studied. 
We investigate this equation for ?,a= 0. Moreover, we first assume that Poisson's ratio 

and the stresses are known functions of one coordinate r. 
We write (1.1) in the form (the prime denotes differentiation with respect to r) : 

p++F’++F_Lg+zO 

c 
f= 

o,- S8 
F= 

v!s, - (i - v) 66 
W1. - (1 - v) “b ’ G* ) 

Using the method of separation of variables F = R, (r) B, (fi), we obtain two ordinary 
linear differential equations to seek the functions R,(r) and B, @) Cm is a numerical 
parameter) 

d% 
2 f rPB,=O 
de' 

R”.+~A,‘+t(f’+mZ~)R,=O 

(5.1) 

(54 

Integrating (5.11, we have (Al,, AZm are arbitrary constants) 

B, = AI, cos mfi +- A,, sin mfi, m # 0; B, = Alo + A,,fJ (5.3) 
We now consider (5.2). The general integral of this equation can be indicated /9/ for 

many of the simplest dependences f(r), however, the problem of seeking the solution at least 
for the individual values of the parameter m and Poisson's ratio when no other constraints 
with the exception of integrability need be imposed on the function f(r) is of greatestinterest, 
and would enable us to investigate a number of inverse problems for bodies with arbitrary stress 
fields of the form (4.3). Even the case when the stresses uR = o(r) change by jumps form one 
finite value to another for certain r could be examined. 

such particular values for the parameter m would be m = 0 and m = 1, where no constraints, 
with the exception of (4.2), are imposed on v (r) 

Indeed, in this case the equation for R, can be written in the form 

(ii+ zk)($ + LI+=il (m=O, 1) 

I.e., it decomposes into two first-order equations which, when solved, yeild (C,, and C,, are 
arbitrary constants) 

R, = rme-Y Cl, + C2, ( s r-(‘m-l)e’r &) ( v = 1 f $ (5.5) 

We will present still another mode of writing the solution of (5.4) in the case when the 

stresses and Poisson's ratio in the body are such that 

f -- m 
-= 

r 
$$ (m=O, I) 

vi:; 7.e ?,.? (r) are polynomials, the degree of the polynomial Q? (r) is greater than the degree 
,> i h X,‘,(I). and the right side of (5.6) is an irreducible fraction which, it is known, can be 
converted into a sum of elementary fractions 

t-m - 
r 

=2L+LL+...+ 
, - r, r- Ti 

* (Qs(ri) =O, i = 1, 2, . .) 
n 

The solution of (5.4) can be represented in a form equivalent to the solution (5.5) 

R, = (r - rp (r - r2)-‘? . . . (r - r,\“n [Cl, + CZ, 1 dm+l) (r - rl)nl . . (r - rn)afl &j (5.7) 

Thus, the general integral of (5.2) has the form (5.5) for m = 0,1 and arbitrary a8(r), 

*, (r). v (r) I and in the special case when the function (f -m)lr is of the type (5.6) can be 
represented in the form (5.7). 

The law of shear modulus variation in a body has the form 

1 
1 

1 
TX= v~,-(l--v)o~ x %(r)&,@) $8) 

m=0 

Having this solution available, a more general case of inhomogeneity can be found by 
using relationships (3.1) and (3.2). 
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If the body material 

then f = 2 for any a,and 

form 

Its solution is 

is incompressible ;v = l/J, and operates under plane strain condltlons, 
ua given in the form (4.3). Equation (5.2) is converted to the 

R,Q+R,‘+$R,=O 

(5.9) R, = r-r (C,, cos np + C,, sin np), n = T/m* - 1 
p = In r, m#0,1 
R, = Cl0 + C,,+, R, = r-l (C,, L Czl In r) 

Therefore, the law of shear modulus variation in the case of the plane strain of an 

inhomogeneous body of incompressible material can formally be represented in the form of the 

series 

(5.11)) 

By using the relationships (3.1) and (3.2) it is possible to pass from this solution to 
the more general case of an 'nhomogeneity when the shear modulus in the body is described by 
the dependence (5.10) and Porsson's ratio 

v+- G* -\f"(r, P) 
"?+ +, 

(5.111 

Formula (5.11) is obtained for the case of plane strain. For the generalized plane state 
of stress the v must be replaced by v/(f + v). Finally, the law of variation of Poisson's ratio 
in a body takes the form 

5-5 
y= r 

R - 2G*Y ir, pi 

S,T ZR + 2G*Y((r. p) 

6. If the relationships between the displacements, strains, and stresses known in the 

theory of elasticity are used, then the ccmponents of the displacement vector U, and uR can 
be determined. 

Thus, if new constants and notation are introduced 

z,,'(r) = ,\ .&u 5, lwhi = dkl co9 fl i- .+l,,sin fi 

l~,,=~,,lsill~-_-l:,cos~ 

then from relations (5.X), l5.5; and (5.81, the law of shear modulus variation for 2' 2 I'? and 

m=O cari be written in the form 

1 
;;;s = (1 _V)p;,:_ \‘:r 1:110 - .dzorJ T (As0 t &P)Z,'(~)] (“. 1) 

We hence find 

For m = 1 we have 

I -L 
>= 5, -;‘I -T,) :R [Cl2 (fi, -L %:I& (f-) U,*(P)] 

2Gou, = [y_, (r) - r2e-q] C’IZ (0) f 

,i?i ..:- ‘/, (r)rdr-rr?e-~%:i-((T)TInr-_ 1 CS,@)++ v34(fJ) 

2Go~~p, = - ;:I, (r) 1.12 (fi) - 1 j e-Vs+ (r) r dr + In r] VM (B) $- ‘/@‘SC @) 

Analogous relationships can be obtained for v = I!* and any m. 

7. We examine the first inverse problem for a long inhomogeneous cylinder under Plane 

strain conditions subjected tc an internal pressure p0 and an external Pressure pi (a and b 

are the cylinder inner and outer radii). we limit ourselves to the case when the function 

G* (r, B) must be sought for a known Poisson's ratio. 
If the cylinder material is homogeneous, then, as Lam6 showed, the state of stress is 

characterized by the absence of shear stresses. we assume that r,i s 0 also in the case 05 i‘ 

inhomoqel:;,q--= ::F;ter;a; xih~;t the remsir' Ctre=C rcens3r ccmPonents (z,, 0, : z2eprd G,lL ST:-: :. 
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Moreover, we a-sume that Y#'/~. 
As has been shown above, (5.2) for an arbitrary function v(r) is integrated successfully 

:--.J for two values of the parameter m, where the shear modulus can be represented in the form 

.;., _ I‘ equivalently, in the form of a sum of the functions (6.1) and (6.3). 
Arbitrary constants occur in the solution of the inverse problem, and to avoid uncertainty, 

it must be supplemented by appropriate boundary conditions. 
It follows from the formulas for the displacements (6.2) and (6.4) that the displacements 

will be determined uniquely in the case under consideration if we set 

AZ0 = Aa = A,, = Aal = AdI = 0 (7.1) 
The remaining arbitrary constants can be determined by requiring that the function G* (r, p) 

takes given values on one of the domain boundaries, for r = a, say. 
It follows from relationships (6.1) and (6.3) that the inverse problem can be solved only 

for the following boundary conditions (a,,a,,a, are constants) : 
r = a, l/G* = a, $ al cos p + a2 sin p 

An an illustration, consider the inverse problem for an inhomogeneous cylinder with Y= 
const and the boundary condition 

r=n, G'=1 (7.2) 
The condition is independent of fl and consequently (6.1) and (6.2), which correspond to 

the case m=o, can be bypassed. 
In engineering analyses of pipes under internal and external pressure, it is often 

assumed that oR= c1 to simplify the computations. We will investigate the possible nature of 
cylinder inhomogeneities under this assumption. 

Fig.1 Fig.2 

It follows from (4.3) and the boundary conditions that 

Fig.3 

co 
5r = 7 T Cl, 

PI - Pn CO = b-_n ab, P,P - Plh C, = i-_a ) 

For v+O, 112 we have 

f C” 
-= 
r YC”T - (I - 2V) c,rl = v -l,r+&-“j-‘] (a+) 

Taking account of (6.1), (7.1) and (7.2), we have from (5.7) and (5.8) 

i.4,0= iI- *]l-l!v) 

(7.3) 

fi.4) 

Values of G* are presented below which show the nature of the change in the relative 
shear modulus over the pipe thickness for different 0=0.1,0.3,0.4 for p,=O and b:a= 3:2(2= 

(r - o)/(b - a), G’ = 

It is seen 

8. If the 
(7.1) cannot be 
inhomogeneities 

1 for c=O) 

0:3 ok, 
5=0,:! 0.4 0,6 0,s 1 
1,097 1,096 1,183 1,189 1,263 1,275 1.33i 1,356 1,433 1,404 

0,4 1,098 1,193 1,285 1,373 1,458 

that the change in L‘ has a neglibile effect on the function G*(r). 

inverse problem is sovled for a simply-connected domain, then the requirement 
imposed. A number of important effects of the influence of the nature of the 
on the state of stress of the body can here be clarified successfully. 
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we will solve the inverse problem for an inhomogeneous curved bar occupying the domair: 

S: la<r<b, O<fi<a*l. Compressive forces ~,,and p1 act ontheinner and outer faces of the 
bar while normal forces with resultant Q (Fig.11 act on the endfaces fi = 0 and p = a* we 
will confine ourselves to the case when the function G* (r, fi) must be sought for a known 
Poisson's ratio. 

It follows from the dependences (6.1) and (6.31 that for v#I,~ the inverse bounda 
value problem can be solved for the following boundary conditions on the faces: 

r = a. l'G* = CL" -- ai cos /!I - a, sin fi + a, fl (8.1) 
r = L. liG* = yO -; v, cos p 7- y2 sin p 1 1t3[j 

If Poisson's ratio is 1' = I',, _ or varies in conformity with the dependence (5.11) within 

the limits of the body, then the problem under consideration is solved successfully for the 
most general case of the boundary conditions 

r = a. G* = Go* (p); r = b, G* = G,* (fi) (8.2) 

Indeed, in this case the shear modulus can be written in the mode (5.10). 

Expressing B, (p) in terms of trigonometric functions for A,, = l,A,,,, = 0,we will substitute 

the dependence (5.10) into the boundary conditions (8.2:. We consequently find 

Now expanding the left side in a Fourier series 

and collecting like terms for all cosmp. we equate them to zero. For each k we consequently 

obtain simple algebraic equations tc determine all the arbitrary constants that enter into 

the function H, (r). 
As an illustration, we consider the first inverse problem for a curved bar with V= CUM 

and the following boundary conditions: 

j- = 0, G* = 1; r _I h. G’ = G,’ (G,’ = ronst) (8.41 

The conditions are independent of p and, consequently, the law of shear modulus variation 

can be represented in the form (6.1) for A,,,- A,,- 0. 

We will investigate the case when the state of stress of an inhomogeneous bar agrees 

with the state of stress of a homogeneous bar, i.e., has the form 

Then 

i 2.-l 2 1 I 
i [. 1 - (1 - 3) iv] 

r-_ --- r 7 r - T” i f r,, 

rLi = 

Therefore, the function j:r is cf the type (5.61, which enables (5.7) to be used. Having 

determined the arbitrary constants from Cti.4‘1, we finally find 

We show by the solid lines in Fig.2 the nature of the change in the shear modulus G* fcr 

\' = 1,'3. b : II = 3 : 2 and different G1* =: (1.5, 1, 1.5. 2 (curves l--4 respectively;. The baris sub>ected 

to the pressure P, while 1'1,m- is. 
It follows from (8.61 that the solution of the problem under consideration with the 

boundary conditions (6.4) always exists, with the exception of the case when the function 

‘4 - (I - 2v)BrZ changes sign by passing through zero in the domain S. However, a trivial 
solution G* = con9 of !l.i. is always possible here. 

We investigate the nature o. F the changein the shear modulus in a body when the quanTiZ> 

..l - (1 -22.1 Br: vanishes OR the boundary cf the domain S:[n<r<,b,U<p<a*]for r-i(b=i-1. 

where E is a smaii qluantity . This is possible if ~-112 and 

In the case under consideration T (r, oi = In [(I: - r?):(I- -- o?j]. 

We shos; in Fiq.1 the nature of the changeinthe shear modulus in a body for 
v = , 2, t L_ 

;_‘*, _ \ ..~; ;_-’ ?_,_z__-- ..=- .=->. t‘= -ICC : . , = $. c a?; T(T_ ..nl..;cc ; 7 
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relative shear modulus at the pipe outer surface: G1'=0.3 (curves located below the line 

G' = 1) and &* = 2 (remaining curves). It is seen that the shear modulus starts to vary only 

as F, approaches one, assuming the given value C,* for E= 1 
It should be emphasized that all these inhomogeneity effects have no influence on the 

state of stress in the bar; it agrees with the state of stress in a homogeneous bar. 
There are no such effects for v= 1:'~ since the law of shear modulus variation takes the 

form 

[ 
1 - G,' r=- a' 

G*= I+Tm I-' 

We investigate the case now when op= cl= con&. Then the functions (TV and j/r have the 

form (7.3) and (7.4). We solve the problem under the boundary conditions (8.4). 
From (6.1) we have 

The integral is solved by the method of rationalization for any v= rn'fi. where m and n 
are natural numbers. Thus, for f= 113 we obtain 

i 
2cz 

A,,,+Am In~r-cz~-~- 

The arbitrary constants are determined from the boundary conditions (8.4). 
The dashed curves in Fig.2 illustrate the nature of the change in the relative shear 

modulus over the bar thickness. The bar dimensions, Poisson's ratio of the material, and the 
boundary conditions are the same as in 

If curves 1 or 2 are compared, we 
they correspond are quite close. But, 
radically. The deduction can hence be 
the body inhomogeneity can result in a 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

the first illustration. 
see that the functional dependences G* (r, 6) to which 
meanwhile, the states of stress of the bodies differ 
made that in certain cases an insignificant change in 
large change in the stress field. 
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